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Here’s briefly what we’ll be discussing today:

Mathematical objects and structure

Sets and structure
Structure-preserving functions
Isomorphisms

Symmetry in mathematical structures
Automorphisms
Measuring symmetry

Graph automorphism groups
The invariance theorem
Further examples
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Mathematical objects and structure
Sets and structure

Mathematical objects can be thought of as sets with some sort of
defined structure.

A graph Γ consists of
A set V of vertices, and
A relation called adjacency.

The adjacency relation may be thought of as a
function from V × V to the set {0, 1}.
It returns 1 if you input two vertices that share a
common edge.
It returns 0 otherwise.
(Typically, this function is visualized as the adjacency
matrix of Γ.)
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Mathematical objects and structure
Sets and structure

Another example comes from geometry.

The cartesian plane R2 is the set of ordered pairs of
real numbers.
The structure defined on R2 consists of the functions
that measure distance and the angle between two
intersecting lines.
Any subset of R2 inherits the structure defined on R2.
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Mathematical objects and structure
Structure-preserving functions

As important as mathematical objects themselves are the functions
between them that preserve some of the structure.

In geometry, continuous functions preserve some of the discussed
structure. Differentiable functions preserve even more structure.
In graph theory,
A structure-preserving function between two graphs Γ and Γ′ is a
function f from V to V ′ that preserves adjacency. This means that
if v1, v2 ∈ V are adjacent in Γ, then f (v1) and f (v2) must be
adjacent in Γ′.
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Mathematical objects and structure
Isomorphisms

An isomorphism is a function that preserves all of the relevant
structure.

In graph theory, an isomorphism is a function f satisfying:
f is 1-to-1 and onto,
two vertices v1, v2 ∈ V are adjacent in Γ if and only if f (v1)
and f (v2) are adjacent in Γ′.

A geometric isomorphism
must be 1-to-1, onto, and continuous,
must preserve distances between points and angles between
lines,
must have an inverse that satisfy all of these properties.
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Mathematical objects and structure
Isomorphisms

Two graphs are considered essentially the same if there is an
isomorphism between them.
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Symmetry in mathematical structures
Automorphisms

Symmetry can be thought of as an object’s
self-similarity.

An automorphism of an object X is an isomorphism
from X to itself.

Automorphisms of an object can be thought of as the
types of symmetry that the object exhibits.

The identity function on X , defined by I (x) = x , is
always an automorphism, no matter what kind of
object X is.
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Symmetry in mathematical structures
Measuring symmetry

A group G is a set of functions, from a set X to itself, that satisfies
the following properties:

The identity function I (x) = x is in G ,
If f , g ∈ G , then so are f ◦ g and g ◦ f ,
If f ∈ G , then f is invertible and f −1 ∈ G .

Now, if X is some mathematical object, let Aut X denote the set of
all automorphisms of X .
Aut X is a group, no matter what kind of object X is.
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Symmetry in mathematical structures
Measuring symmetry

If Γ is a graph, then Aut Γ is a group.

The set AutR2 is also a group, and consists of familiar geometric
transformations such:

Reflecting the entire plane across some line,
Rotating the entire plane about some point,
Translating every single point in the plane by some vector.

The same way that numbers can be used to measure various
aspects of some object (i.e. number of vertices of a graph, or
number or edges, or number of sides of a polygon) automorphism
groups are used to measure the symmetry of an object.

The size and complexity of the group Aut X tells us how symmetric
the mathematical object X is.

Daniel Brice, Auburn University Symmetry Groups



Symmetry in mathematical structures
Measuring symmetry

If Γ is a graph, then Aut Γ is a group.

The set AutR2 is also a group, and consists of familiar geometric
transformations such:

Reflecting the entire plane across some line,
Rotating the entire plane about some point,
Translating every single point in the plane by some vector.

The same way that numbers can be used to measure various
aspects of some object (i.e. number of vertices of a graph, or
number or edges, or number of sides of a polygon) automorphism
groups are used to measure the symmetry of an object.

The size and complexity of the group Aut X tells us how symmetric
the mathematical object X is.

Daniel Brice, Auburn University Symmetry Groups



Symmetry in mathematical structures
Measuring symmetry

If Γ is a graph, then Aut Γ is a group.

The set AutR2 is also a group, and consists of familiar geometric
transformations such:

Reflecting the entire plane across some line,

Rotating the entire plane about some point,
Translating every single point in the plane by some vector.

The same way that numbers can be used to measure various
aspects of some object (i.e. number of vertices of a graph, or
number or edges, or number of sides of a polygon) automorphism
groups are used to measure the symmetry of an object.

The size and complexity of the group Aut X tells us how symmetric
the mathematical object X is.

Daniel Brice, Auburn University Symmetry Groups



Symmetry in mathematical structures
Measuring symmetry

If Γ is a graph, then Aut Γ is a group.

The set AutR2 is also a group, and consists of familiar geometric
transformations such:

Reflecting the entire plane across some line,
Rotating the entire plane about some point,

Translating every single point in the plane by some vector.
The same way that numbers can be used to measure various
aspects of some object (i.e. number of vertices of a graph, or
number or edges, or number of sides of a polygon) automorphism
groups are used to measure the symmetry of an object.

The size and complexity of the group Aut X tells us how symmetric
the mathematical object X is.

Daniel Brice, Auburn University Symmetry Groups



Symmetry in mathematical structures
Measuring symmetry

If Γ is a graph, then Aut Γ is a group.

The set AutR2 is also a group, and consists of familiar geometric
transformations such:

Reflecting the entire plane across some line,
Rotating the entire plane about some point,
Translating every single point in the plane by some vector.

The same way that numbers can be used to measure various
aspects of some object (i.e. number of vertices of a graph, or
number or edges, or number of sides of a polygon) automorphism
groups are used to measure the symmetry of an object.

The size and complexity of the group Aut X tells us how symmetric
the mathematical object X is.

Daniel Brice, Auburn University Symmetry Groups



Symmetry in mathematical structures
Measuring symmetry

If Γ is a graph, then Aut Γ is a group.

The set AutR2 is also a group, and consists of familiar geometric
transformations such:

Reflecting the entire plane across some line,
Rotating the entire plane about some point,
Translating every single point in the plane by some vector.

The same way that numbers can be used to measure various
aspects of some object (i.e. number of vertices of a graph, or
number or edges, or number of sides of a polygon) automorphism
groups are used to measure the symmetry of an object.

The size and complexity of the group Aut X tells us how symmetric
the mathematical object X is.

Daniel Brice, Auburn University Symmetry Groups



Symmetry in mathematical structures
Measuring symmetry

If Γ is a graph, then Aut Γ is a group.

The set AutR2 is also a group, and consists of familiar geometric
transformations such:

Reflecting the entire plane across some line,
Rotating the entire plane about some point,
Translating every single point in the plane by some vector.

The same way that numbers can be used to measure various
aspects of some object (i.e. number of vertices of a graph, or
number or edges, or number of sides of a polygon) automorphism
groups are used to measure the symmetry of an object.

The size and complexity of the group Aut X tells us how symmetric
the mathematical object X is.

Daniel Brice, Auburn University Symmetry Groups



Graph automorphism groups
The invariance theorem

The following theorem says that Automorphism groups are an
invariant of a graph, ie, a property that isomorphic graphs share.

Theorem
Suppose Γ and Γ′ are graphs. If Γ is isomorphic to Γ′, then Aut Γ is
isomorphic to Aut Γ′.

Exercise: Prove the theorem.
Hint: Let f be a graph isomorphism from Γ to Γ′. There’s a clever
trick you can use that lets f turn elements of Aut Γ into elements
of Aut Γ′.
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Graph automorphism groups
The invariance theorem

The converse of the invariance theorem does not hold. Two
non-isomorphic graphs can have isomorphic automorphism groups.

◦ ◦

◦ ◦

◦

The two graphs to the right have
isomorphic automorphism groups
(namely, the cyclic group C2),
but are not isomorphic.
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Graph automorphism groups
The invariance theorem
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These two graphs each have six
vertices and five edges, and have
the same automorphism group,
C2, but are not isomorphic.
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Graph automorphism groups
Further examples
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The Automorphism group is S3 × C2.
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Graph automorphism groups
Further examples

No more yet, maybe someday in the future. I have some more
examples in mind, but honestly, it’s just really hard to code all
these graphs into latex.

Daniel Brice, Auburn University Symmetry Groups



Further Reading
Symmetry Groups
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